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Of course, if the law controlling the changes of length
becomes known quantitatively it will always be easy to
adjust the tabulation to meet such a prerequisite.

}Zule V.—As immediate consequences of the foregoing
rules the results of any periodicity tabulation will be a
composite aggregate of possibly several real commensu-
rate periods, probably of small amplitude, upon which will
be superposed numerous accidental errors and many
uneliminated residuals, greatly obscuring the actual facts.

In the examination ofg:he results it must constantly be
recognized that sequences of wholly fortuitous numbers
will always exhibit periodic features, and these, as well as
all real commensurate periods, can be evaluated by the
Fourier analysis or other devices. Nevertheless, only
those features can be claimed as real which emerge and
persist and endure in a more or less consistent fashion,
regardless of some particular method of derivation. The
results must be derived in as many legitimate and different
ways as possible. Only those features which consistently
survive and emerge from every analysis can he regarded
as real periodic features in any body of data. All those
features which vanish, change, and reappear incident to
every legitimate change of data, method of treatment,
etc., must be regarded as quite spurious, unreal, and
largely the vagames of fortuitous conditions.

'%he whole atmosphere can not, of course, be expected to
act as a unit with respect to periodicities, and we must be

repared to find wide differences at different times and in
gitfere’nt localities.

If it were not quite foreign to the scope and purpose of
this note, it. would be most interesting and instructive
to show at this point the practical working of the periodic-
ity tabulations on actual data, and the application of the
rules in the interpretation of complicated results which
are secured. These must, however, be reserved for an-
other time.

§5/.8590.2 ;. §5/.850/

FITTING STRAIGHT LINES TO DATA GREATLY SIM-
PLIFIED WITH APPLICATIONS TO SUN-SPOT EPOCHS

By CaarLes F. MARVIN
[Weather Bureau, Washington, March 24, 1924]

Many studies of the data of meteorology, economies,
business, etc., are facilitated and definite results may he
expressed by the evaluation of a straight line of best fit
to the statistics involved. This is often accomplished in
an approximate way by graphical methods, but in a great
many cases a far more certain and accurate result can be
secured by a very simple arithmetical calculation follow-
ing rigorously the principle of least squares. Moreover,
the computation really entails much less time and effort
than that required to produce the less accurate scale
drawing of the necessary chart.

The cases in which this simple method can be used
arise whenever the data correspond to exactly equal and
uniform intervals of time, like days, weeks, months, sea-
sons, etc. In still other cases the observed values cotre-
spond to a series of abstract integers like 0, 1, 2, 3, etc.,
which represent recurrences of certain features, such, for
example, as consecutive observations of the epochs or
dates of the minima, or maxima of the sun-spot period.
Finally, even when the original layout of the statistics
does not satisfy the above simplifying condition it is often
possible to make some simple adjustments of the data
so that the simplifying condition is satisfied. It seems
from the foregoing that there are a large number of prob-
lems in which the simple computations can be employed,
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andhevery student of statistics should he perfectly familiar
with it.

The problem is to compute the best values (as defined
by least squares) of the constants a and b in the general
equation of the straight line,

y=a+br

where ¥ represents any series of observations correspond-
in% to integral values of z=0, 1, 2, 3, ete.

n order to accomplish two objects in this same note,
I will ask the reader to turn his thoughts for a moment
to Newcomb’s method ! of evaluating the normal epochs
of sun-spot phenomena and the normal length of the
period. His normal value of the sun-spot cyele 11.13
years is widely quoted and universallgr accepted as
})robably the best evaluation of this puzzling solar
eature. His method must, therefore, be, as it is, a
very sound one, nevertheless it seems to be little under-
stood and almost never used, either in the analysis of
modern sun-sgot data not available to Newcomb or in
a hundred other problems of periodicities in other sta-
tistical data. ’

Newcomb'’s method is simply that of fitting a straight
line to the observations which fix the dates of the max-
ima, the miniina, the mid-phase values rising or falling,
or any other chosen characteristic of data that may
he available, and since the consecutive observed values
correspond to successive abstract numbers 0, 1, 2, 3,
cte., representing recurrences of the same thing, the
simplifying condition of the arithmetical computation
is satistied at the outset.

Both objects of this note, therefore, are accomplished
by the calculation of the sun-spot data since, say 1820,
to date.

Observations.—We shall use the dates given by Wolfer
for simply the minima of sunspots since 1820.

TABLE 1.—Dates of epochs of minima of sun spots by Wolfer,
1820 to 1924

] i
X hd ! c i X y c

: i
| i

3! ! 5] 1,878.9 43.9

! | 6 1,880.8 +3.6

i 5 7| 1,901.7 +4.7

| 8| 1,913.8 +-5.6

| 19| 1,923.9 +4.9

1 The epoch of the present. sun-spot minimum has not as yet been established accu-
rately, hut it will probably differ very little from the date indicated.

Almost every student contents himself with the
faulty method of deducing the average length of the
period by subtracting the first date from the last one

and dividing the difference by 9, viz, 000 =11.18 years.

This not only presupposes that the first and last dates
are exact ones, but it wholly ignores the irregular inter-
mediate dates, and any attempted adjustment of the
intermediate epochs to a normal series assigns sll the
irregularities to the intermediate epochs, while the first
and last stand 100 per cent perfect. This is clearly
wrong, because we must presuppose that each of the
dates is affected by some error or irregularity and
determine the amount thereof fairly by the method of
analysis. This is what Newcomb’s method does.

GRAPHICAL SOLUTION

Procedure.——Lay off on the ¥ axis of a coordinate
diagram a scale of dates beginning preferably a little

1 Astrophysical Journal, vol. 13, 1901, p. 1.
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before the date of the first observed epoch of minimum
to be analyzed. Lay off points on this scale locating
all the observed minima.

Transfer each of these points to consecutive ordinates
at uniform intervals corresponding to z values 0, 1, 2,
3, etc. (See ﬁ% 1.) Such I[l)lcl)ints in general will fall in a
diagonal, nearly straight line. Fit a straight line to
the points as well as possible, either by eye or by
analytical methods, and the problem is solved.

Results.—The sfope of the line gives the normal
length of the period. This value is best found by

noting on the vertical scale two intersections of the
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Simply to avoid large numbers we assume b=11.0+b’
and our working equation now becomes

a+b'z=(y—1820+11.2) =¢

The quantity ¢ is now a small number for each observa-
tion instead of the awkward large number representing
the dates of the several minima. Its values are given in
Table 1. .

Procedure.—Write down the observations (¢) in two
columns (I, II) and form the differences, d= (II-I) as
indicated. Multiply these by certain weights, ¢, in this
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FiG6. 1.—Representing the graphical solution of fitting struight lines to observations of epochs of minimum of sun spots,
aceording to Newcomb’s method

line with two widely separated ordinates. The slope is
the ratio of the two sets of differences, thus:

Intersection at ordinate 9 =1924.0
Intersection at ordinate 0=1822.2
Differences.......__.. 9 101.8

Average period l—gy =11.31 years.

The several intersections of the line with the ordinates
0, 1, 2, 3, etc., fix the normal or adjusted dates for the
corresponding minimum epochs. )

Greater accuracy is attained in the g:phica.l solution
if the vertical scale is exaggerated. ume a uniform
10 or 11 year interval and plot on an enlarged vertical
scale the excess of the observed over the assumed regular
intervals. The points located by the crosses in the
lower part of the diagram (scale at right) show the
excesses over the uniform scale 1820, 1830, 1840, etc.

ARITHMETICAL METHOD

We are to find the best values of @ and b in the equation
of the straight line

y=1820+a+bz

case 9, 7, 5, 3, and 1. Find the sum of all the ¢’s = 36.6,
also of the products gd=51.8

TaBLe 2.—Calculation of b’ and a
[a=10. N (see Table 4)=165. Weight=2-1, n-3, n-5, etc.]

o "
! bservations | 1yiter- | Weights
ence, g Products
I - II-1 n-1, -3, od
IIdown{ IIup d
e e e i - .
1
33! 48| +Le 9 144
29, 5.6 +2.7 7 18,9
L5 47 +3.2 5 18.0
3.0! 3.6 +0.6 3 1.8
3.3 | 3.9 +0.7 1 07
I
BSOS - oo 13.9 |' {%;
TOtAl . - o ececcaaan ! Zc=36.6 | ____________________ 5.8
51.8
b = y=Tes=0:314

Hence b=11.314 which is the best normal length of the
sunspot period between 1820 and 1924.

36.6 (n-1)

o 900 N NL) a2 i
a=-"75-| "5 b 1.413] 2.247
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Hence, adjusted date of initial epoch of minimum is,
1822.25 years, a date 1.1 years before the observed date.
Final equation, y=1822.25+11.31z.

TABLE 3.—Final results

Differ-
Epochs | Epochs
of minima ndggsted esneerevgg-
observed ale. | ZGnte. |
i
1823.3 1822 2 +1.1
33.9 3.6 +0.3
43.5 44.9 —1.4
56.0 56.2 —-0.2
67.2 67.5 —0.3
78.9 78.8 +0.1
89.6 90, 1 —0.5
1901. 7 1901.4 4 +0.3 |
13.6 12.8 +0.8
280 | 21| -0z,

Great stress is laid by some writers upon the variability
of the length of the sun-spot cycle, and a great deal of
significance is claimed for the variations. In so far as the
one hundred years of observations comprised in the above
analysis are concerned there is a very striking constancy of
the period as shown by the small residuals in Table 3,
and it is difficult to see any significance to the slight
fluctuations which appear.

In writing down the observations in the two columns I
and II of Table 2, it is necessary that thelast observation
should always stand opposite the first and then the others
will pair off together.

W}l)len the number of observations is odd the middle
observation must, of course, stand alone at the foot of
either I or II. It also occurs that the weights in this case
are always even numbers and end at the foot of the table
with 0; that is, the middle observation has no weight
whatever in fixing the value of b’.

As a final comment we may suggest that it will rarely
be necessary to carry out the calculations for a large
number of observations, individually, but rather these
may be conveniently grouped in two’s, three’s, five's, etc.,
thus reducing the large number to a series of, say, 10 or 20
values. A little judicious planning of the layout of proh-
lems suffices to bring almost any problem of this kind
within the scope of the simple computations in Table 2.

For the sake of completeness we may write here the
basic equations which evaluate ¢ and b’ Tollowing the cal-
culations in Table 2. The computer needs only to follow
the simple rules to which these equations lead without
necessarily understanding them clearly.

X ndy (A)

B . 2Zxe—(n—1)2c
N=[2s2 -} (n—17] B
Now the great simplification comes in (B). Expanding

the numerator leads to the combination of the observa-
tions into pairs, which can be weighted and summed as in
the last column of Table 2. The proper weights aren— 1,
n—38, n—5, etc., in all cases.

Furthermore, the denominator is always a definite
number depending only upon how many observations are
used. This denominator, N, together with the sum of
squares of the natural numbers from 1 to 25 are easily
computed, once for all, and are given in Table 4. The
sums of squares-are really not needed in the present case,
but are given as it is sometimes convenient to have them,
and ta.bFes containing these values are not very numerous.
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TABLE 4.—Values of N and = n? for natural numbers 1 lo 25

[N= [2.",:!——; (n—l):]. =0, 1,2, 3, ete.]

| n N | =ar
|

) U S, 1

i 2 1 5

3 4 14

4 10 . 30

5 20 | 55

8 35 91

7 56 140

8 84 204

9 120 285

10 165 385

11 220 508

12 286 650

13 364 819

14 456 1,015

15 560 1,240

18 680 | 1,496

17 816 1,786

18 969 2,109

19 1,140 2,470

[ 1,330 2,870

) 1, 60 3,311
| 22 | L7 | 3,795 1
23 | 202 | 43 |
24 | 2,300 | 4,000 |
25 2600 | 5,525 .

|

—

$5/.80/
ON KRICHEWSKY'S METHOD OF FITTING
FREQUENCY CURVES

By Epncar W. WooLARD
[Weather Burean, Washington, D. C., Mareh 10, 1921)

-\ Law of Facility may be described as the approximate
expression of the relative frequency with which, in the
long run. different values are assumed by a quantity
which is dependent on a number of variable items or
clements, given certain conditions which seem to be ade-
qluﬂ.tely fulfilled in common experience. For example,
the Law of Facility in the familar case of the ordinary
errors of observation was exhaustively studied many
vears ago and has long been accurately represented by
the so-called Gaussian curve of errors, the equation of
which is well known.

In recent years the great value of bemng able to derive
with'quantitative precision the curve which shall exhibit
the law of facility of a quantity under consideration
has come to be realized to a greater and greater degree
in an immense variety of fields of study. In any case
the problem is to find from a finite number of observations,
which give a more or less irregular frequency polygon
or histogram, the curve  which approximates most
closely to the frequency curve which would result if we
could have an infinite number of observations.

We now have several well-known methods of fitting
curves to observed frequency distributions. The first
difficulty in curve ﬁttinﬁ is that of choosing a suitable
curve from among all the possible algebraic and tran-
scendental curves that suggest themselves; the second
difficulty lies in evaluating the constants of the equation
of the adopted curve. Until a comparatively recent
date, the great majority of applications of the theory of
frequency curves were to errors of precision measure-
ments, which, as mentioned above, usually conform
closely to the Gaussian or Normal Law. As a result, the
Normal Curve became a Procrustean bed to which all

ossible measurements had to be made to fit; not until
ate In the nineteenth century did skew curves gain
general recognition,! Again, it was for a long time taken
or granted that the correct method of evaluating the

1 See Arne Fisher. The Mathematical Theory of Probabilities. Vol. 1, 2 ed., pp. 178~
187. New York, 1922,



